The Economics of Adolescent Meningococcal Vaccination in the US: Direct and Indirect Benefits

Ismael Ortega-Sanchez, PhD Senior Health Economist

National Center for Immunization and Respiratory Diseases

Objective

- Analyze the effectiveness and cost-effectiveness of a mass meningococcal vaccination program (MCV4) in 11-17 yrs adolescents in the US
- Evaluate the individual (direct) and potential herd immunity (indirect) impacts of an adolescent vaccination program in all the population

Design

- Monte Carlo simulation analysis
- Hypothetical population
 - One million 11-17 years old cohort within a 10 Million US age-representative population sample.
- Strategy
 - One time mass vaccination in 11-17yrs + routine vaccination of each new 11 years old cohort
- Time Frame: 10 years
- Analytic Horizon: Age-specific Life Expectancy
- Discount rate: 3% (0%-5%)

The Model

4

Epidemiologic Data

- Age- year- and C+Y+W135 serogroup-specific incidence rates (1991-2002)
- Age- and serogroup-specific case fatality ratios
- Proportion of survivors with sequelae by condition
- Vaccine efficacy: 93% (39-99%) from MCC campaign in UK
- Duration of vaccine efficacy: 10 years
- Age-specific herd immunity impact: UK experience
- Coverage in adolescents: 70% (16-95%)
 - Shepard et al., Pediatrics 2005

Annual Incidence of C+Y and B Serogroups: per 100,000*

Case Fatality Ratio: Age and Serogroup Specific (ABC data)*

Age group	Proportion of Deaths by MCV4 Serogroups				Case Fatality Ratio **	
	С	Y	W135	All MCV4	C+Y+W135	All serogroups
<1 yrs	47	0	0	47	0.02	0.05
l yrs	67	0	0	67	0.02	0.03
2-4 yrs	82	9	0	91	0.06	0.06
5-10 yrs	50	20	0	70	0.05	0.06
11-17 yrs	47	38	0	84	0.11	0.13
18-22 yrs	58	10	0	68	0.09	0.14
23-32 yrs	35	35	10	80	0.10	0.12
33-64 yrs	31	37	7	75	0.12	0.16
65+ yrs	14	48	2	64	0.12	0.19
Overall	37	31	3	72	80.0	0.10

Proportion of Survivor Cases with Sequelae by Type of Condition

Skin scarring	7.6	(0-19)
Single amputation	1.9	(0.5-10)
Multiple amputations	1.2	(0.02-6)
Hearing loss*	8.8	(2-20)
Significant long term neurologic disability**	2.1	(0.02-11)

^{*} Edwards *et al.* Complications and sequelae of meningococcal infections in children. J Pediatrics 1981; 99:540-5

^{**} Baraff *et al.* Outcomes of Bacterial meningitis in children: a metaanalysis PIDJ 1993;12:389-94

Percentage Reduction in Attack Rate in Unvaccinated Cohorts After MCC Campaign in UK

Herd immunity impact was chosen *randomly* from the following two studies:

Ramsay et al., BMJ, 2003: 326:365-366

Balmer et al., J. Medical Microbiology, 2002: 51:717-722

Cost of Illness*

	Tot	al Costs	% indirect costs	
	Acute	Infection	as time from work loss	
Per case	\$	34,590	4.9%	
Complication	+ Long term costs		+ lifetime prod.	
Death	\$	1,340,348	97.4%	
Skin scarring	\$	40,288	4.2%	
Single amputation	\$	200,906	37.3%	
Multiple amputations	\$	453,860	48.8%	
Hearing loss	\$	344,889	70.6%	
Neurologic disability	\$	3,127,925	23.5%	

^{*} Cost measured in 2003-2004 in **Shepard** *et al.*, **Pediatrics**, **May 2005**, were updated to **December 2006 US**\$

Cost of Vaccination

- Cost components of vaccination program
 - Vaccine
 - Public and private sector prices
 - 2006 price of meningococcal conjugate vaccine
 - Wastage 10.7% (range 0-25%)
 - Administration fees
 - Adverse events
- Estimate of cost per vaccination
 - \$83 Base case, (range \$64-\$114)

Results

Annual Number of Cases in the US Attributable to C+Y+W135 Serogroups With and Without Mass Vax in 11-17yrs (Two Herd Immunity Scenarios)

*Assumes Herd Immunity impact equivalent to the reported in UK, 93% vaccine efficacy and 70% coverage in 11-17yrs

Cumulative Number of Health Outcomes Prevented in 10 years for the US*

	No	Mass vax &	Outcomes
	vaccination	routine	prevented
All acute cases	16,706	8,455	8,251
All complications	3,608	1,826	1,782
Deaths	1,489	781	698
Life-years lost	69,180	32,349	36,831
Life-years lost (discounted)	30,548	15,087	15,264
QALYs lost	127,572	58,188	69,383
QALYs lost (discounted)	53,051	25,521	27,150

Costs of Disease, Vaccination and Health Outcome in 10 years for the US*

	No	With mass	
	vaccination	vax & routine	Cost (savings)
Total disease cost	2,852	1,381	(1,471.2)
Direct costs	1,071	520	(551.1)
Indirect cost	1,781	861	(920.1)
Vaccination program costs **	n/a	3,268	3,267.8
Net cost *			
Payer	n/a	n/a	2,716.7
Societal	n/a	n/a	1,796.6
Cost per case / case prevented *	*		
Payer	0.064	0.335	n/a
Societal	0.171	0.223	n/a
Cost per life lost / life saved **			
Payer	0.719	3.943	n/a
Societal	1.916	2.623	n/a

In Millions 2006 US\$. Costs are discounted at 3%

** Cost per vaccinee \$83

Cost-effectiveness Comparisons of MCV4 Interventions*

		Cost per Life	-year Saved	Societal Cost	
	Herd			per QALY	
	Immunity	Payer	Societal	saved	Source
Mass vax and routine					
(Ramsay rates) 🂳	Yes	136,000	116,000	81,000	Current analysis
Routine 11-year olds					-
(20y efficacy)	No		121,000	118,000	Shepard 2005
Mass vax and					·
routine ***	Yes	147,000	127,000	88,000	Base-case
Routine toddlers (20y					
efficacy)	No		166,000	105,000	Shepard 2005
Routine 11-year-olds					•
(10y efficacy)	No	219,000	205,000	179,000	Shepard 2005
Routine infants (<1y)					<u> </u>
(20y efficacy)	No		482,000	271,000	Shepard 2005

CDC

Net Cost per LY Saved* Under Different Herd Immunity Scenarios: Median, 5% and 95%

(Mass Vax 11-17 yrs.+ Routine in 11 yrs)

No valuation of productivity lost due to premature death Assumes 70% of vaccination coverage in 11-17yrs & \$83 vaccination cost

Cost-effectiveness Comparisons of MCV4 with Other Vaccines*

	Herd	Cost per Life- year Saved	
	Immunity	Societal	Source
Pertussis routine in			
all 11- to 18-year-olds	Yes	6,300	Caro 2005
HPV routine in			
females 12y +	Yes	18,000	Taira 2004
Mass vax and routine			
(Ramsay rates) 💳	Yes	116,000	 Current analysis
Mass vax and			
routine 🌥	Yes	127,000	Base-case
1st year college			
students in dorms			
with MPV4	No	297,000	Scott 2002
Meningitis prevented			
in infants with PCV-7	No	316,000	Lieu 2000

Cost were updated to 2006 US\$ and rounded to the nearest thousand

Strengths and Limitations

Strengths

- Complex modeling with direct and indirect effects of vaccination
- Explicit use of incidence and CFR surveillance data for MCV4 vaccine-containing serogroups

Limitations

- Data on vaccine efficacy and herd immunity are from the impact of MCC in the UK
- Quality of Life during the acute disease not assessed

Conclusions

- A one time mass vaccination of all healthy adolescents followed by a routine program in preadolescents could have substantial impact on burden of disease
 - up to 48% reduction in cases
 - -80% of prevented cases are from herd immunity
- For the same duration of vaccine efficacy, catchup and routine could be as half expensive per LY saved or QALY saved as routine vaccination of 11-12 years old only.

Collaborators* (in alphabetical order)

- Oleg Bilukha, was with NCID
- Martin I. Meltzer, NCPDCID
- Nancy Messonnier, NCIRD
- Mark L. Messonnier, NCIRD
- Colin Shepard, was with NCID
- David S. Stephens, Emory University
- Elizabeth Zell, NCIRD
- Xinzhi Zhang, was with NCID

ABCs surveillance team

All collaborators, no conflict of interest

Appendix

Annual Number of Cases in the US Attributable to C+Y+W135 Serogroups With Mass Vax in 11-17yrs (Four Herd Immunity Scenarios)

*Assumes Herd Immunity impact equivalent to the reported in UK, 93% vaccine efficacy and 70% coverage in 11-17yrs

Cumulative Number of C/Y/W-135 Cases and Cases Prevented in the US* in 10 Years (Median values from the Monte Carlo)

Net \$/LY saved* of Targeting Vaccination

Top 25% Endemic Counties vs. All Counties

Incidence: ~1.57/100K (Top 25%)**, ~0.8/100K (AII)

* Total Net cost, ** Average of 5 years ('98-'02) ABCs data Assumes 70% of vaccination coverage in 11-17yrs

